Phosphoglycerate kinase--glyceraldehyde-3-phosphate dehydrogenase interaction: reaction rate studies.
نویسندگان
چکیده
Rate studies using phosphoglycerate kinase (PGK)--glyceraldehyde-3-phosphate dehydrogenase (GPDH) enzyme pair have been carried out to distinguish between the two mechanisms of intermediate metabolite transfer, namely diffusion through the solvent versus "substrate channelling" within an enzyme-enzyme complex. A procedure has been described for the assay of the rates of PGK-catalysed and the PGK-GPDH coupled reactions at high (saturating) GPDH concentration. With PGKs of rabbit muscle and yeast, the coupled reaction proceeded faster than the PGK-catalysed reaction. At a high salt concentration (0.5 M KCl), where a PGK-GPDH complex is known to dissociate, the two reactions proceeded at almost equal rates. At fixed PGK concentration, the rate of the coupled reaction at high (saturating) GPDH concentration varied with the nature (biological origin) of the latter enzyme. In the presence of 0.5 M KCl, the saturating rate values with different GPDHs were almost equal. The PGK-catalysed reaction exhibited typical Michaelian behaviour on varying the substrate concentrations (linear double reciprocal plots). The Km values for 3-PGA (0.51 mM) and ATP (0.40 mM) were independent of the concentration of the second substrate. The double reciprocal plots for the coupled reaction showed downward curvature, i.e. activation at higher substrate concentrations. The ratio of the rate of the coupled reaction: the rate of the PGK catalysed reaction was found to be a function of the nature of PGK, nature of GPDH, nature of buffer, pH, salt concentration and substrate concentrations. The ratio varied between close to unity at low substrate concentrations, to three when the Vmax values of the two reactions were compared. At low substrate concentrations, the rate of the coupled reaction became independent of the nature of GPDH. It has been suggested that in the PGK-GPDH pair, the intermediate metabolite (BPG) is transferred directly from one enzyme to the other within an enzyme-enzyme complex, except at high salt or low substrate concentrations. Under the latter conditions, data were consistent with metabolite transfer by diffusion. Implications of these results for coupled enzyme assays have been discussed.
منابع مشابه
The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea: Understanding Its Whims by Experimentation In Silico
Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), which catalyzes the direct oxidation of glyceraldehyde-3-phosphate to 3...
متن کاملThe stereochemical course of the ribulose-5-phosphate kinase-catalyzed reaction.
Spinach-leaf ribulose-5-phosphate kinase catalyzes the reaction of (Rp)-[beta, gamma-18O, gamma-18O]adenosine 5'-(3-thiotriphosphate) with ribulose 5-phosphate to form ribulose 1-[18O]phosphorothioate 5-phosphate. This product is incubated with CO2, Mg2+, and ribulose-bisphosphate carboxylase to form the [18O]phosphorothioate of D-glycerate. Reduction of this material using phosphoglycerate kin...
متن کاملIsolation and properties of the glycolytic enzymes from Zymomonas mobilis. The five enzymes from glyceraldehyde-3-phosphate dehydrogenase through to pyruvate kinase.
The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate ...
متن کاملLoose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells.
Loose interaction between the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was visualized in living CHO-K1 cells by fluorescence resonance energy transfer (FRET), using time-domain fluorescence lifetime imaging microscopy. FRET between active tetrameric subunits of GAPDH linked to cerulean or citrine was observed, and this FRET signal was...
متن کاملElementary processes of the magnesium ion-dependent adenosine triphosphatase activity of heavy meromyosin. A transient kinetic approach to the study of kinases and adenosine triphosphatases and a colorimetric inorganic phosphate assay in situ.
Transient kinetic studies of Mg(2+)-dependent heavy-meromyosin ATPase (adenosine triphosphatase) were done by monitoring the release of both ADP and P(i) into the reaction medium by using linked assay systems. The release of P(i) was monitored by its quantitative transfer to ADP, with concomitant reduction of NAD(+) in the presence of d-glyceraldehyde 3-phosphate, d-glyceraldehyde 3-phosphate d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 36 2 شماره
صفحات -
تاریخ انتشار 1999